逆双曲余接関数 inverse hyperbolic cotangent
これでもかっ!って感じ.字面が紆余曲折っぽいw
紆余曲折関数(爆
$\int_0^{\frac{\pi}{4}}\sqrt{\tan x}\,dx$ の検算は>wolframalpha
$\frac{\pi +\log(3-\sqrt{2})}{2\sqrt{2}}$
√tan の積分で,
$\int_0^{\frac{\pi}{4}}\sqrt{\tan x}\,dx=\int_0^{1}\,\frac{2t^2}{t^4+1}\,dt$
$=\frac{1}{2\sqrt{2}}(\pi +\log\frac{\sqrt{2}-1}{\sqrt{2}+1})=\frac{\pi +\log(3-\sqrt{2})}{2\sqrt{2}}$
$=\frac{1}{2\sqrt{2}}(\pi +\log\frac{\sqrt{2}-1}{\sqrt{2}+1})=\frac{\pi +\log(3-\sqrt{2})}{2\sqrt{2}}$
$\int_0^{\frac{\pi}{4}}\sqrt{\tan x}\,dx$ の検算は>wolframalpha
$\frac{\pi +\log(3-\sqrt{2})}{2\sqrt{2}}$
だったけど,分数式 $\int_0^{1}\,\frac{2t^2}{t^4+1}\,dt$ を検算させると,>wolframalpha
$\frac{\pi -2\coth^{-1}\sqrt{2}}{2\sqrt{2}}$
となる.つまり
$\log(3-\sqrt{2})=\log\frac{\sqrt{2}-1}{\sqrt{2}+1}=-2\coth^{-1}\sqrt{2}$
というのである.
$\coth^{-1}$ は双曲余接(coth) の逆関数.
三角関数は sin, cos, tan は高校で習う.
こいつら,すべて逆数に名前がついている.>三角関数sin cos tan
$\frac{1}{\sin}=\csc$ 余割 cosecant
$\frac{1}{\cos}=\sec$ 正割 secant
$\frac{1}{\tan}=\cot$ 余接 cotangent
なので,cot は正接 tan の逆数で余接cotangent コタンジェントである.
さらに,双曲三角関数というのがあって,>由来の考察
双曲正弦 $\sinh x=\frac{e^x-e^{-x}}{2}$
双曲余弦 $\cosh x=\frac{e^x+e^{-x}}{2}$
双曲正接 $\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^x-e^{-x}}{e^x+e^{-x}}$
と定義されている.
双曲正接の逆数が双曲余接 $\coth x=\frac{e^x+e^{-x}}{e^x-e^{-x}}$
つまり,
$\log\frac{\sqrt{2}-1}{\sqrt{2}+1}$ が双曲余接の逆関数っぽいわけだ.
実際,
$x=\coth y=\frac{e^y+e^{-y}}{e^y-e^{-y}}$
とおいて,$y=$ にしてみる.
$x=\frac{(e^y+e^{-y})e^y}{(e^y-e^{-y})e^y}$
$=\frac{e^{2y}+1}{e^{2y}-1}$
$(e^{2y}-1)x=e^{2y}+1$
$xe^{2y}-x-e^{2y}-1=0$
$(x-1)e^{2y}-x-1=0$
$(x-1)e^{2y}=x+1$
$e^{2y}=\frac{x+1}{x-1}$
$2y=\log\frac{x+1}{x-1}$
したがって,
$y=\coth^{-1} x=\frac{1}{2}\log\frac{x+1}{x-1}$
$x=\sqrt{2}$ のときは,
$-2\coth^{-1} \sqrt{2}=-2\times\frac{1}{2}\log\frac{\sqrt{2}+1}{\sqrt{2}-1}$
$=-\log\frac{\sqrt{2}+1}{\sqrt{2}-1}$
$=\log(\frac{\sqrt{2}+1}{\sqrt{2}-1})^{-1}$
$=\log\frac{\sqrt{2}-1}{\sqrt{2}+1}$
と一致する.
0 件のコメント:
コメントを投稿
スパム対策のため,コメントは,承認するまで表示されません。
「コメントの記入者:」は「匿名」ではなく,「名前/URL」を選んで,なにかニックネームを入れてください.URL は空欄で構いません.