Processing math: 100%

2023年3月3日金曜日

√tan の積分から作った分数式の積分

\int_0^{\frac{\pi}{4}}\sqrt{\tan x}\,dx\sqrt{\tan x}=tとおいて分数式に置換した積分.
\int_0^{\frac{\pi}{4}}\sqrt{\tan x}\,dx=\int_0^{1}\,\frac{2t^2}{t^4+1}\,dt

t^4+1=t^4+2t^2+1-2t^2=(t^2+1)^2-(\sqrt{2}t)^2=(t^2-\sqrt{2}t+1)(t^2+\sqrt{2}t+1)
より,\frac{2t^2}{t^4+1} を部分分数に分解する.

恒等式,\frac{2t^2}{t^4+1}=\frac{at+b}{t^2-\sqrt{2}t+1}+\frac{ct+d}{t^2+\sqrt{2}t+1} の分母を払って,
2t^2=(at+b)(t^2+\sqrt{2}t+1)+(ct+d)(t^2-\sqrt{2}t+1)
=(a+c)t^3+(\sqrt{2}a+b-\sqrt{2}c+d)t^2+(a+\sqrt{2}b+c-\sqrt{2}d)t+b+d
係数比較で,
a+c=0 より,c=-a
b+d=0 より,d=-b
\sqrt{2}a+b-\sqrt{2}c+d=2 より,\sqrt{2}a+b-\sqrt{2}(-a)+(-b)=2, 2\sqrt{2}a=2, a=\frac{1}{\sqrt{2}}, c=-\frac{1}{\sqrt{2}}
a+\sqrt{2}b+c-\sqrt{2}d=0 より,a+\sqrt{2}b+(-a)-\sqrt{2}(-b)=0, 2\sqrt{2}b=0, b=0, d=0
\frac{2t^2}{t^4+1}=\frac{\frac{1}{\sqrt{2}}t}{t^2-\sqrt{2}t+1}+\frac{-\frac{1}{\sqrt{2}}t}{t^2+\sqrt{2}t+1}

\int_0^{\frac{\pi}{4}}\sqrt{\tan x}\,dx=\int_0^{1}\,\frac{2t^2}{t^4+1}\,dt=\int_0^{1} \frac{\frac{1}{\sqrt{2}}t}{t^2-\sqrt{2}t+1} \,dt+\int_0^{1}\frac{-\frac{1}{\sqrt{2}}t}{t^2+\sqrt{2}t+1} \,dt

1つ目の分数式の積分

分母 (t^2-\sqrt{2}t+1)'=2t-\sqrt{2} で,分子\frac{1}{\sqrt{2}}tを割ると
\frac{1}{\sqrt{2}}t=\frac{1}{2\sqrt{2}}(2t-\sqrt{2})+\frac{1}{2}

\int_0^{1} \frac{\frac{1}{\sqrt{2}}t}{t^2-\sqrt{2}t+1} \,dt = \int_0^{1} \frac{\frac{1}{2\sqrt{2}}(2t-\sqrt{2})+\frac{1}{2}}{t^2-\sqrt{2}t+1} \,dt
=\frac{1}{2\sqrt{2}}\int_0^{1} \frac{(t^2-\sqrt{2}t+1)'}{t^2-\sqrt{2}t+1} \,dt +\frac{1}{2}\int_0^{1} \frac{1}{t^2-\sqrt{2}t+1} \,dt
と分ける.

(1つ目前半)

\frac{1}{2\sqrt{2}}\int_0^{1} \frac{(t^2-\sqrt{2}t+1)'}{t^2-\sqrt{2}t+1} \,dt =\frac{1}{2\sqrt{2}}[\log(t^2-\sqrt{2}t+1)]_0^{1}

=\frac{1}{2\sqrt{2}}\log(1^2-\sqrt{2}+1)-\frac{1}{2\sqrt{2}}\log(0^2-\sqrt{2}\times 0+1)=\frac{\log(2-\sqrt{2})}{2\sqrt{2}}

(1つ目後半)

分母 t^2-\sqrt{2}t+1=(t-\frac{\sqrt{2}}{2})^2-\frac{1}{2}+1=(t-\frac{1}{\sqrt{2}})^2+\frac{1}{2}

より,t-\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}\tan\theta とすると,
(t-\frac{1}{\sqrt{2}})^2+\frac{1}{2}=(\frac{1}{\sqrt{2}}\tan\theta)^2+\frac{1}{2}=\frac{1}{2}(\tan^2\theta+1)=\frac{1}{2}\times\frac{1}{\cos^2\theta}
積分区間は t=0 のとき,0-\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}\tan\theta, \tan\theta=-1, \theta=-\frac{\pi}{4}
t=1 のとき,1-\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{2}}\tan\theta, \tan\theta=\sqrt{2}-1, \theta=\arctan(\sqrt{2}-1) 

dt=\frac{1}{\sqrt{2}}\frac{1}{\cos^2\theta}\,d\theta
 で置換すると,
\frac{1}{2}\int_0^{1} \frac{1}{t^2-\sqrt{2}t+1} \,dt=\frac{1}{2}\int_{-\frac{\pi}{4}}^{\arctan(\sqrt{2}-1)} \frac{1}{\frac{1}{2}\times\frac{1}{\cos^2\theta}} \frac{1}{\sqrt{2}}\frac{1}{\cos^2\theta}\,d\theta
=\frac{1}{\sqrt{2}}\int_{-\frac{\pi}{4}}^{\arctan(\sqrt{2}-1)} 1\,d\theta=\frac{1}{\sqrt{2}}[\theta]_{-\frac{\pi}{4}}^{\arctan(\sqrt{2}-1)}=\frac{1}{\sqrt{2}}(\arctan(\sqrt{2}-1)-(-\frac{\pi}{4}))

1つ目の分数式の積分は
\int_0^{1} \frac{\frac{1}{\sqrt{2}}t}{t^2-\sqrt{2}t+1} \,dt=\frac{\log(2-\sqrt{2})}{2\sqrt{2}}+\frac{1}{\sqrt{2}}(\arctan(\sqrt{2}-1)+\frac{\pi}{4})

2つ目の分数式の積分も同様にすると,
\int_0^{1} \frac{-\frac{1}{\sqrt{2}}t}{t^2+\sqrt{2}t+1} \,dt=\frac{-\log(2+\sqrt{2})}{2\sqrt{2}}-\frac{1}{\sqrt{2}}(\frac{\pi}{4}-\arctan(\sqrt{2}+1))

したがって,
\int_0^{\frac{\pi}{4}}\sqrt{\tan x}\,dx=\int_0^{1}\,\frac{2t^2}{t^4+1}\,dt
=\frac{\log(2-\sqrt{2})}{2\sqrt{2}}+\frac{1}{\sqrt{2}}(\arctan(\sqrt{2}-1)+\frac{\pi}{4})+\frac{-\log(2+\sqrt{2})}{2\sqrt{2}}+\frac{1}{\sqrt{2}}(\frac{\pi}{4}-\arctan(\sqrt{2}+1))
=\frac{\log(2-\sqrt{2})}{2\sqrt{2}}+\frac{-\log(2+\sqrt{2})}{2\sqrt{2}}+\frac{1}{\sqrt{2}}(\arctan(\sqrt{2}-1)+\frac{\pi}{4}-\frac{\pi}{4}-\arctan(\sqrt{2}+1))
=\frac{1}{2\sqrt{2}}(\log(2-\sqrt{2})-\log(2+\sqrt{2})) + \frac{1}{\sqrt{2}}(\arctan(\sqrt{2}-1)+\arctan(\sqrt{2}+1))
=\frac{1}{2\sqrt{2}}(\log(2-\sqrt{2})-\log(2+\sqrt{2})) + \frac{1}{\sqrt{2}}(\frac{\pi}{2}) ・・・①
=\frac{1}{2\sqrt{2}}(\pi +\log(2-\sqrt{2})-\log(2+\sqrt{2}))
=\frac{1}{2\sqrt{2}}(\pi +\log\frac{2-\sqrt{2}}{2+\sqrt{2}})
=\frac{1}{2\sqrt{2}}(\pi +\log\frac{\sqrt{2}-1}{\sqrt{2}+1})


\frac{\sqrt{2}-1}{\sqrt{2}+1}=\frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}=\frac{3-2\sqrt{2}}{2-1}=3-2\sqrt{2}
だから合ってる.

分数式の \int_0^{1}\,\frac{2t^2}{t^4+1}\,dt を検算したら,>wolfram

0 件のコメント:

コメントを投稿

スパム対策のため,コメントは,承認するまで表示されません。
「コメントの記入者:」は「匿名」ではなく,「名前/URL」を選んで,なにかニックネームを入れてください.URL は空欄で構いません.