Processing math: 2%

2023年2月22日水曜日

別解

先日の計算>今日の積分

コメントで違うやり方を教えてもらったので,再計算.
先日のやり方は,最近,円周率の数値計算を書き直した関係で「頭が tangent」になっていたのが影響した.


\int_1^3\sqrt{\frac{4}{x}-1}\,dx
=\int_1^3\sqrt{\frac{4-x}{x}}\,dx=\int_1^3\frac{\sqrt{4-x}}{\sqrt{x}}\,dx

コメントでは,\sqrt{x}=t, \frac{1}{2\sqrt{x}}\,dx=dt と置換して,
=\int_1^3\sqrt{\frac{4-x}{x}}\,dx=2\int_1^\sqrt{3}\sqrt{4-t^2}\,dt 
と,教科書の練習問題にあるような積分となる.
教科書ではこの積分は,t=2\sin\theta と置換するので,はじめから\sqrt{x}=2\sin\theta と置換してしまう.

両辺2乗して
x=4\sin^2\theta
dx=4\cdot 2\sin\theta\cos\theta\,d\theta
dx=8\sin\theta\cos\theta\,d\theta

\sqrt{\frac{4}{x}-1}=\sqrt{\frac{4-x}{x}}=\frac{\sqrt{4-x}}{\sqrt{x}}
=\frac{\sqrt{4-4\sin^2\theta}}{2\sin\theta}=\frac{2\sqrt{1-\sin^2\theta}}{2\sin\theta}=\frac{\sqrt{1-\sin^2\theta}}{\sin\theta}=\frac{\sqrt{\cos^2\theta}}{\sin\theta}=\frac{\cos\theta}{\sin\theta}



積分区間は
x=1のとき \sqrt{1}=2\sin\frac{\pi}{6}, \theta=\frac{\pi}{6}.
x=3のとき \sqrt{3}=2\sin\frac{\pi}{3}\theta=\frac{\pi}{3}.
 
\int_1^3\sqrt{\frac{4}{x}-1}\,dx
上記の置換により
=\int_\frac{\pi}{6}^\frac{\pi}{3}\frac{\cos\theta}{\sin\theta}8\sin\theta\cos\theta\,d\theta
=8\int_\frac{\pi}{6}^\frac{\pi}{3}\cos^2\theta\,d\theta
倍角公式\cos2\theta=2\cos^2\theta-1 より \cos^2\theta=\frac{1+\cos 2\theta}{2}
=8\int_\frac{\pi}{6}^\frac{\pi}{3}\frac{1+\cos 2\theta}{2}\,d\theta
=4\int_\frac{\pi}{6}^\frac{\pi}{3}(1+\cos 2\theta)\,d\theta
=4[\theta+\frac{1}{2}\sin 2\theta]_\frac{\pi}{6}^\frac{\pi}{3}
=4(\frac{\pi}{3}+\frac{1}{2}\sin 2\cdot\frac{\pi}{3}-\frac{\pi}{6}-\frac{1}{2}\sin 2\cdot\frac{\pi}{6})
=4(\frac{\pi}{6}+\frac{1}{2}\sin \frac{2\pi}{3}-\frac{1}{2}\sin \frac{\pi}{3})
=4(\frac{\pi}{6}-\frac{1}{2}\cdot\frac{\sqrt{3}}{2}+\frac{1}{2}\cdot\frac{\sqrt{3}}{2})
=4(\frac{\pi}{6})=\frac{2\pi}{3}

原始関数4(\theta+\frac{1}{2}\sin 2\theta)=4\theta+2\sin 2\theta
\sqrt{x}=2\sin\theta より,\frac{\sqrt{x}}{2}=\sin\theta, \theta=\arcsin\frac{\sqrt{x}}{2}
2\sin 2\theta=2\cdot2\sin\theta\cos\theta=2\cdot2\sin\theta\sqrt{1-\sin^2\theta}
=2\sqrt{x}\sqrt{1-\frac{x}{4}}=2\sqrt{x}\frac{\sqrt{4-x}}{2}=\sqrt{x}\sqrt{4-x}
なので,
4(\theta+\frac{1}{2}\sin 2\theta)=4\theta+2\sin 2\theta=\arcsin\frac{\sqrt{x}}{2}+\sqrt{x}\sqrt{4-x}

0 件のコメント:

コメントを投稿

スパム対策のため,コメントは,承認するまで表示されません。
「コメントの記入者:」は「匿名」ではなく,「名前/URL」を選んで,なにかニックネームを入れてください.URL は空欄で構いません.