2005年4月1日追記.
「不定」,「不能」といのうは正しいとはいえない.正しくは「定義できない」だけでよい.
その辺の事情を書いた
0で割れない理論的な(ということは難しい)理由
これからは次のように説明するかな.
1.逆数とは積が1になる2数.(逆数の定義) 2.0倍したらなんでも0(定理)だから,0の逆数(0倍して1になる数)はない. 3.割り算は,逆数をかけること.(除算の定義) 4.5を0で割る計算は,5と,0の逆数の掛け算だが,存在しない数とは掛け算できない. 5.つまり0で割る計算は「できない」 |
2004年12月19日追記.
実数の公理から,0の四則計算を証明.
0の四則計算(0の意味)
2004年6月8日追記.
先週も1年生に0で割る計算を授業で話した.5分で納得してもらえる.
5÷0の答えはなんだと思う? 「わからない」「0」「?」 じゃあさ,15÷3の答えは? 「5」 そうだよね.どうして? 「15個のものを3人で分ければ5個ずつだから」 え,いつもそうやって割り算してるの? 「・・・」 15÷3の答え5を出すとき,何してる? 「三五十五」 お!掛け算の九九だね.えらい,よく知ってる! おれさぁ,いまだに7の段の後半が苦手でさ.しちろく四十八とか言っちゃう時がある. それはともかく, 15÷3の答えが5なのは,15=3×5 だからなんだよね. じゃあ,5÷0 の答えを □ とするよ.すると 5=0×□ じゃなきゃだめだよね. 0倍したらどうなる? 「みんな0」 だよねー.0倍して5になるような数は? 「全然ない」 そう,OK! ,5÷0 の答えは『全然ない』んだよ. 次にさ,0÷0 の答えを □ とするよ.すると 0=0×□ じゃなきゃだめだよね. □ は 0倍して0になる数が入るよ. それはどんな数? 「なんでも」「全部」 正解!みんな良くわかるなぁ. 0で割ると『全然ない』か『全部』になっちゃうから,意味ないでしょ.だから数学では,そんな無意味なことは考えないことにしているんだ. |
2005年3月27日追記.
テレビ番組で,大々的に放送したらしい.
くろべえ: 脳内エステIQサプリ
0で割る計算
2000年4月,1年生に0で割る計算をレポートで考察してもらい,それに対するコメントを配布したので,そのまま掲載.
はじめに
今回のレポートで皆さんの努力が良くわかりました.とても深く考えてくれた人,色々な実例を考えてくれた人等々.
「問題を解くこと」は数学理解のための手段であり,それが数学の目的ではないのです.頭を使うことはそのまま数学することです.頭を使うことを嫌がったり,怖がったりしてはなりません.みんなは,テレビを見るときは頭を使わずに見ていると思います.数学の授業をテレビを見るように受けてはいけません.私のしゃべることを,自分の頭脳の中に展開して,数学的なイメージを作りながら授業を受けてください.イメージが作れないときは,わかってないということですから,「わかんない!」と叫んでください.ノートは補助的にとるだけであって,板書を写すことが目的となることの無いようにしましょう.(私は板書が下手なので写すのが趣味の人の期待にはそえません)ノートの整理は復習の時にするようにして,授業中は頭を使うことに専念しましょう.
数とは
まず,自然数は個数を数えるという,人間の最も簡単な数学的概念を表現したものといえます.皆の解答の中に,
が,たくさん見受けられました.
人がたくさんいました.それを理由に「解がない」というならば
ということになる.個数が一つもないことをや大きさがないことを 「0」 と表現しますが, それは,個数や大きさを表現する数として,数 0 が存在することになります.一つもないことを表現する 0 であるがゆえに,
と混同しているようです.
「0」という表記がある以上「0は存在」します.
「0」が存在しなければひとつもないことを表すことができなくなります.
「5-5」の答えを表記する手段として0は存在します.
これは「点は存在しても,点の大きさがない」に近いものです.
例えば,方程式 x2+1=0 を考えてみましょう.移項すると x2=-1 となります.つまり,解は2乗すると -1 になる数です.そんな数は少なくとも,数直線上に出てくる数(実数) ではありません.この方程式をみたす解は実数の範囲には存在しません.存在しないからといって,x=0 ではないでしょう.
一方,方程式 2x-3=-3 の解は x=0 です.「0」 が求まったからといって, この方程式の解がないということにはならないでしょう.
個数が一つもないことや大きさがないことを表現する 「0」 と 「数が無いこと」を混同しないようにしましょう.
数は,もともと個数を数えることから始まりました.小さい子供もその様な数をはじめにおぼえます.数が,個数だけを表現するものならば, 「無いことが 0」 としてもさほど差し支えありません.しかし,数は個数以外にも色々なものを表現します.みんなが知っている数としては,実数(数直線で表される数)はかなり万能な数です.もし,数が個数しか表現しないとしたら...
次の問題を考えてみましょう.
5÷4=1.25 だから答え 1.25 台ですか? でも,そんな答えはナンセンスです.5台の車を4人で等分することなどできないからです.つまり,自動車が5台,人が4人というのは,個数つまり自然数だけの世界です.5÷4 の答えは自然数にはならないので,この問題は「解はない」,「5台の自動車を4人で等しく分けることはできない」と答えるしかありません.
つづいて,数が正の数しか表現しないとしたら...です.個数につづいて,次は「大きさ」です.大きさというのは正の数,正確には正の実数で表現されます.
1-3=-2 なので -2m ですか? でも,そんな答えはナンセンスです.1m のひもから,3m 使うことなど出来ないからです.つまりひもの長さは「大きさ」なので正の数だけの世界です.これもやはり,「解はない」,「1m のひもから 3m は使えない」と答えるしかありません.
つまり,数というのは使う場面により,意味を持つ範囲が自ずから定まります.私が,0 で割る計算を出したときはとりあえず数はあらゆる数を考えてました.それを,個数だけに限定して考える頭の固い人が多かったことにびっくりしています.まあ,割り算の定義は小学校(せいぜい正の数)で教わったままの人が多いのでしかたがないことなのでしょう.
数が個数や大きさしか表さないのならば,小数や負の数はナンセンスです.でも,液体の量を測ったりするのに実数(ここでは特に小数)は有用ですし,空間の位置を表現するためには正の数だけでは無理があります.
もちろん,小数も負の数も「数える」ことから出発していて,だからこそ 1, 2, 3, ・・・ などの数字を使うわけですが,ここでそれらの作り方を確認します.
まず,小数.あるひもの長さを測るとします.単位はこの際なんでもいいですが,便宜的に 1m としましょう.1m づつ測りながら数えていって,ひもの長さが 4m と 5m の間にあることがわかりました.そうしたら,次に 1m を 10等分して 6つめと 7つめの間にひもの端がきました.6つめと 7つめの間をさらに 10等分したら,ちょうどひもの長さが3つめにきました.このときひもの長さを小数で 4.63m と表現するのです.(このように10等分するとき小数の 10進展開といいます,半分にして 0,1 だけを使えばコンピュータで使われる2進展開になります.)つまり小数も「数える」ことを基本にしていますが,小さく分けて数えるわけです.
ここで疑問になるのが,「無限に続くわけのわからない小数も数といえるか」となるわですが,これは「極限」の議論ですから,ここでは説明しません.
次に負の数.これは,数直線の作り方でもあります.直線上に点O をとり O と違う点 E をとり,線分OE の長さを 1 とします.そして,点O には数0,点E には数1 を対応させます.ある点A が O からみて E 側にあり,線分OA の長さが,4.63 のとき点A には数4.63 を対応させます.ある点B が O からみて E と反対側にあり,線分OB の長さが,2.3 のとき点B には数 -2.3 を対応させます.これが,負の数です.
位置を表現する数として,負の数は不可欠です.さらに,1年の2学期には実数よりさらに広い数の世界(複素数)を学習します.その数のありがたみは,高校の数学程度ではほとんどありませんが,電磁気学を表現する数として,なくてはならない数です.
数は個数を数えることから始まってますが,それだけでは表現できるものが少なすぎるため,負の数や,小数,その他色々な数に拡張されるのです.
としか思えない人にとって,負の数の理解に到達することが難しくなります.
割り算とは
割り算とは何でしょう.「10個のものを5人で分けるとき」 10 ÷ 5 = 2 と答えることかな.
という理由を書いた人が多かったのは,小学校で始めに習ったときは,「分けること」とならったからなのでしょう.「分けること」の計算に使うのは「応用」であって,「本質」ではありません.「応用」から入るのは,現実の問題を考えさせることによって,導入をやさしくするという「教育的配慮」です.その意味で,「関数」で考えたり「速さ」で考えてくれた人もいてそれはそれでよいことですが,結論的にはそれらは「割り算の応用」に過ぎません.
割り算の本質は「1あたりを求める」ことです.そして掛け算は「1あたりがいくつぶんあるか求める」ことです.したがって数学的には
です.10÷5 = 2 の答えを出すときは掛け算の九九の表を思い出して, 5×2 = 10 を計算すると思います.つまり 10 = 5×2 だから 10÷5 = 2 なのです.
10 ÷ 5 = 2
また,5÷0 などを 5 × (1/0) のようにした人もいましたが,問題の本質は変わってません.(1/0)= 1÷0 だからです.「分数=割り算=比」であることを忘れないでください.(分数の割り算についてはこちら.)例えば,(5/8) = 5÷8 = 5 : 8 です.5÷0 を 5/0 と書き換えたところで,表記法が変わっただけで,問題の本質に変わりありません.
0÷5
「0を割る」これは全員正解していました.電卓で計算しても 0 が出てきます.0÷5 = x とすると,0 = 5×x でなくてはなりません.このような x は 0 だけです.
5÷0
「0で割る」その1「無限大」と答えた人がいました.つまり 5÷x で x が正の値をとりながら限りなく 0 に近づくとき答えが無限に大きくなるからでしょう.このようなものを数学では極限といい,これから習います.また,0 に近づくものを無限小といいます.(マイナス無限大とは違います)
実は,0 と無限小とは似て非なるものです.0 はあくまで 0 であり,無限小ではありません.数学では,無限小と 0 は厳格に区別して扱います.
無限小の振る舞いを論じる理論が解析学です.
無限小を無限小で割る計算が微分で,無限小を無限個集めるのが積分です.
無限小を掛けたり,無限小で割ったりしますが,0 を掛けたり, 0 で割ったりすることではありません.
この辺の話しはおもしろいのですが,これからのお楽しみです.
それから「最も大きい数と,最も小さい数」という答えがありました.最も大きい数 M が存在すると仮定すると, M<M+1 満たす M より大きい数 M+1 が存在してしまう.無限大というのは「数」ではなく状態です.
さて,正解ですが,割り算は掛け算の逆算であることから,
です.0 倍して 5 になる数はありえないので,このような計算は不能です.
a が無限大としても 0倍したら 0 になります.5 になりません.
「解はない」でも O.K. でしょう.
でも,5÷4 の解が自然数の範囲に解がないのとは本質的に違います.5÷4 の解は数の範囲を拡張すれば解を持たせることが出来ます.ところが,5=0a をみたす a は数の範囲をどんなに広げても解がありません.そんな意味を込めて「不能」と表現するのでしょう.
どっかで聞いたのか理由がなく「不能」とだけ答えた人もいました.
また「0 で割るから不能である」と意味不明の説明もありました.
「0 で割る計算はできないと聞いた」人もいました.
なぜ,0 で割ると不能なのかを答えてほしかったのですが.
数学は当てものではなく「考えること」です.
0÷0
「0で割る」その2約分して 1 と答えた人がいました.約分とは何でしょう.
0.1÷0.1 = 1
0.01÷0.01 = 1
0.001÷0.001 = 1
・・・・・・
なので 1 と答えた人もいました.分母も分子も 0 に近づくので(つまり無限小)これは 1 になります.でも,前節で説明したとおり無限小と 0 は違います.無限小の振る舞いのおもしろいところをお見せしましょう.
0.2÷0.1 = 2
0.02÷0.01 = 2
0.002÷0.001 = 2
・・・・・・
分母分子とも 0 に近づくのに,この場合割り算の結果はいつでも 2 です.
無限小と 0 は違うのでどちらも 0÷0 の結果ではありません.
このような a はいくらでもあります.数でなくても,式であっても成り立ちます
つまり,解は定まりません.「不定」と表現します.
解が定まらないときには,ほかに,式自身が解になってしまって一つの数に定まらないこともあります.(直線など,図形の方程式)
このような場合は,数値が定まらなくとも式自身が一つの解として定まります.(つまり図形自身が解)
0÷0 の場合,式ですら一つに定まらないのです.
あと,「定まらないから無限」という答えもありました.無限に存在することと,無限そのものはちょっとちがいます.
おわりに
以上見てきたように割り算は掛け算の逆算ですが, 0 で割る計算は「なんにもない」か「なんでもあり」になってしまうので,数学では「0 で割る計算は除外して考える」ことになってます.つま
のです.
5/(x+1) という式では x≠-1 という条件が暗黙のうちについてきます.
「0 が数かどうか怪しい気がする.」と書いた人がいました.でも,現実に「何もないものの個数を表現する数」や「原点の座標を表現する数」として存在します.「数学の本質はその自由性にある.」とは G. Cantor の言です.ある概念を表現するのに有用なものならば,何でも取り入れて(つまり実在するものとして)扱うのが数学です.
これから先,様々な概念が登場します.そのときは頭をタコにしてその概念を自分の中のイメージとして,構築してください.タコぐらいではだめで,液状になるくらいがいいかな.悟りをひらくと,空気のようになる?
さらに自分の(数学)イメージを言語化できる表現力を身につけてください.
参考(2004.3.24 日記)
「0で割る」に見る科学的態度質問サイト回答(2004.7)
2004年7月ある質問サイトの答えに,次のように投稿した.
まず0倍したら,なんでもかんでもすべて0になることはいいですね. そこで割り算とは何でしょう? 15÷3=5 となる理由はなんでしょうか? 「15個のものを3人で分けると5個ずつになるから」ではありません.これは応用. 本質は, 15=3×5 だからなのです. 割り算をするとき実際は掛け算の九九を思い出して,引いていくと思います.「自分は掛け算の九九を使わずに割り算をやっている」という人がいたら,その方法を教えてください.まぁCPU のように引き算の繰り返しとか,「すべて一覧表になっている」(つまり割り算をすべて丸暗記している)人,あるは電卓しか使わない人はいるかもしれませんが,割り算は,実際掛け算をやっているのです.(電卓でしか出来ない人は,掛け算でやる方法を覚えてください.) そう,割り算の本質は「掛け算の逆算」なのです. このことからすると,5÷0 の答えとは,「0倍して5になる数」なんです.0倍したらなんでもかんでもすべて0になるのですから,そんな数はありえませんね. べつに禁止されているわけでも,無限大でもありません.割り算の本質(掛け算の逆算)で考えれば,「そんなものなんにもないよ」というしかありません. 同様に 0÷0 の答えは「0倍して0になる数」ですから「なんでもかんでもすべてあり」になり,これまた意味を持ちません. 0で割る計算は「なんにもない」か「なんでもあり」ということで,無意味なので今のところ「数学では除外して考える」習慣になっています. 今までの数学と矛盾することなく,0で割ることに何か新しくて正しい論理的な意味を持たせることが出来れば,そこから新しい数学が始まると思います.べつに「0で割ってはいけない」ことが数学的に証明されたわけではありませんから.(「数学が矛盾しないことを,有限の論述で証明することはできない」ことは 1931年にまったく数学的に証明されています.) 「数学の本質はその自由性にある」という数学者の言葉があります.固定観念にとらわれることなく,挑戦してみてください. |
やほーちえ袋
少しくらい,自分でアレンジすればいいのに,完全にコピー&ペーストだもんなぁ.最後に,パソコンの計算結果の記述があるけど,「私は人や機械に頼って,自分では思考しません.」という意思表示をしている.
2004年9月4日追記.
「0で割ってはいけない」と習うらしい.俺がいつ教えた?
したがって,
の回答でも
と自分では,何も考察しない回答が並ぶことも多い.
学校では
と教わるものの,「・・・」を忘れ結果だけ覚えていて,ある日「どうしてだろう」と思うのか.
まぁ,「0で割ってはいけない」理由を知らずに「決まりだ」で済ませる数学教師もいるだろうし,知っていても,教えるのは面倒だし,結果だけ使えば受験には十分だし,「決まりだ」で済ませることもあるだろう.
私は「いけない」ではなく,「意味がない」と教えるようにしている.そっちのほうが,理由に近い.
0で割る計算は「なんもない」か「すべて」になって意味がない.
2006年11月21日ブログ - 「0で割る」でアクセス噴火
2005年11月9日追記.
分数の割り算にみる数学における「定義」の意味
Linked
Lestializationどこが間違い?「1=2」を証明する
『0で割るということ』について。
「無限大」の大小について
「無限大」の大小について
「無限大」の大小について
0÷0の答え - Yahoo!知恵袋
0で割るとどうなるか (数学ネタ17)
数学ガールはさっぱり読めてないがゼロディバイドについて - polestar's blog
数学で「A÷0」(ゼロで割る)がダメな理由を教えてください。 - Yahoo!知恵袋
1÷0=? - Yahoo!知恵袋
本当に家庭教師
0÷0=?
ψ(プサイ)の興味関心空間劇場版・・・
OKWave 除算の定義?
[考え事]今日の悩み
2÷0の答えは何になるのでしょうか
[教えて!goo] ∞×0なんて答えあったっけ?
1÷0 と 無限大 の定義
http://www-higashi.ist.osaka-u.ac.jp/~k-maeda/nonsense0501_0503.html
分母が0 -OKWave
[教えて!goo] 分母が0
3/26のIQサプリで…
『0』で割る割り算
Yahoo!知恵袋 - 1÷0 はなんですか?
過去モノ
0/1 と 1/0 の違いを数学的に
[教えて!goo] 生徒に質問されて困ってます。
ちょっと変な質問になってしまうかもしれないですが、中
[教えて!goo] 8÷0=
Yahoo!知恵袋 - 電卓で1÷0を押すとE(エラー)で0になります。1
Yahoo!知恵袋 - 「0^0=不定」を、高校1年生に分かり易
Yahoo!知恵袋 - 0で割り算をすることはできない、ということになっていますが
こないだ数学の授業で、「5÷0」 - Yahoo!知恵袋
[教えて!goo] 1÷0の答えを教えて下さい
くろべえ様
返信削除のぞ、と申します。
今日は勝手にリンク、引用させて頂き、ご挨拶もなく、申し訳ありませんでした。
そして貴重な勉強をさせていただく機会を頂きまして、ありがとうございました。
先ほど非戦様の日記にコメントが入っており、驚きました。
ネットに公開しているものの引用やリンクは自由で,挨拶や断りは不要ですよ.
返信削除必要性を主張するなら,ネットで公開するほうがおかしい.
数学伝道者として他にもいろいろ書き散らしています.>こちら
くろべえさん
返信削除ゼロで割ることにかなりお詳しそうなので、教えてください!
並行光線に凸レンズをかざすと焦点を結びます。理想的な状態の話としてください。
レンズからの距離に応じて光の束の直径Rが小さくなっていき、伴って光の束の密度が増していきます。焦点ではR=0になり、焦点より遠くなるとRはまた大きくなり、光の束の密度は下がっていきます。
光の束の密度はRが分母の関数になると思います。
焦点R=0のときの光の束の密度は数学的には定義(記述?)できないような状態であるということなのでしょうか。
0で割ることに意味が無いというようなコメントを時々見るので、私自身、混乱しています。
「焦点R=0のときの光の束の密度は数学的には定義できない」
返信削除でよいと思います.
「特異点」ですね.
くろべえさん
削除ありがとうございます。
「特異点」なんですね!
げん
再生核研究所声明161(2014.5.30)ゼロ除算から学ぶ、数学の精神 と 真理の追究
削除(5月28日、宿舎から研究室に向っているとき、芝生の先に 木立ちが有り、その先に 入り江が見える情景を見て、エデンの花園のように感じた. そして、この声明の原案とエデンの花園の声明構想が閃いた。)
ゼロで割るを グーグルで調べると、2014.5.28.13:35現在
Cerca de 2 980 000 resultados (0,41 segundos) Resultados da procura
1. ゼロ除算 - Wikipedia
ja.wikipedia.org/wiki/ゼロ除算
Traduzir esta página
ゼロ除算(ゼロじょざん、division by zero)は、0 で除す割り算のことである。このような除算は除される数を a とするならば、形式上は a⁄0 と書くことができるが、数学において、この式と何らかの意味のある値とが結び付けられるかどうかは、数学的な設定に ...
算数的解釈 - 初期の試み - 代数学的解釈 - ゼロ除算と極限
2. 数学で「A÷0」(ゼロで割る)がダメな理由を教えてください ...
detail.chiebukuro.yahoo.co.jp › ... › 数学
Traduzir esta página
14/05/2007 - maru_i_nekoさん. 答えが ないから。 たとえばー 5÷0=Bとしましょうか。B×0=いくつに なりますか。 ゼロですよね。 とゆーことは、Bはゼロ?と思っちゃいますが、それだったらゼロ×ゼロが 5になってしまいます。おかしいですよね。
となっていて、290万件あるが、非常に当たり前の議論が多く、いわば、常識的な議論が多く、考え方などが幼稚であると考えられる。なを、6番目に再生核研究所の最近の成果が述べられている:
1. 再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る ...
https://plus.google.com/.../3bcpFJ7g5fp
Traduzir esta página
Yoshinori Saito
21/04/2014 - 再生核研究所声明154(2014.4.22) 新しい世界、ゼロで割る、奇妙な世界、考え方 再生核研究所声明148で 結構詳しい状況について説明し、特異点解明:100/0 =0,0/0=0 として 詳しい状況はブログなどでも公開、関係文書は保管されている。2月2日考えを抱い ...
そこで、 その問題から、 数学的な考え方と、創造的な精神について触れたい。
まず、どうしてゼロで割れないのか、という疑問が、繰り返し問われているが、これは世に問われている多くの問題、神の問題などと同様に、論理的に 発想そのものが 相当おかしな議論と言える。
これは、割り算の定義をしっかりさせないで、ふらふら議論している、神の定義もしないで、神のことについていろいろ議論を繰り返している。問題にしている、問題の意味を理解しないで、論じている訳であるから、まことに奇妙な議論であるが、世に多いと言える。注意したい。( 逆に言えば、難しい問題とは、問題の意味さえ分からないとも言える)。
次に、真面目に議論して、割り算、分数の定義に基づいて、 不可能である という議論が多い。それは、それで正しいが、ここで、重要な数学の考え方を指摘したい。
数学で不可能である、できないということは、数学のそういっている数学の理論体系では不可能であるといっている事実である。 数学上の不可能は、そういっている理論体系では 不可能であることをいっている。これは、裏からみれば、それを可能にする理論体系、数学が、考え方が、有るかも知れない という発想に繋がる。上記、グーグル、あるいは人類の歴史上、そのように発想しなかったのは、人類の愚かさであり、永い間の盲点であったと言える。― 実際、数学者が、可能にする考えは無いか と問うのは当たり前のことであるが、ゼロ除算は できないという、 先入観で考えなかったのではないだろうか。 しかし、 その問題は、物理学では ブラックホール現象や、ニュートンの万有引力の法則に 深刻な問題を提起してきている、事実もある。― 実際に、自然に割り算の定義を拡張して、簡潔な結果、ゼロで割れば、何時でもゼロであるという結果が導かれた。それらは、高校生レベルの数学で十分であった:
再生核研究所声明148(2014.2.12)100/0=0, 0/0=0 - 割り算の考えを自然に拡張すると ― 神の意志
再生核研究所声明154(2014.4.22)新しい世界、ゼロで割る、奇妙な世界、考え方
再生核研究所声明157(2014.5.8)知りたい 神の意志、ゼロで割る、どうして 無限遠点と原点が一致しているのか?
数学については、上記声明の中で、発見の詳しい状況、位置づけなどについても触れているが、 新しい結果は、予想できない、驚嘆すべき結果を述べている。複素解析学では、1/0 は無限遠点、無限と考えられており、実数でも ゼロを小さな正か、 負の数でゼロに近づくと考えれば、正の無限大や、負の無限大に発散すると考えるのが、世の常識である。 それが突然、ゼロであるとして、強力な不連続性を示しているからである。 上記声明の中で、世に有る爆発や接触などの強力な不連続性を示す、 基本的な現象の型を与えるのではないかとの明るい、予想を展開している。 ここで、触れたいのは、全く、新規な現象が現れたときの 我々の取り組む姿勢、精神の問題である。
まず、人間とは何者であるかを確認したい:
― 哲学とは 真智への愛 であり、真智とは 神の意志 のことである。哲学することは、人間の本能であり、それは 神の意志 であると考えられる。愛の定義は 声明146で与えられ、神の定義は 声明122と132で与えられている。―
人間は何でも知りたい、究めたい、それが本能である。 しかしながら、そんなのはつまらない現象であると理解して、考えない英明な方は、それも もちろん良いのであるが、いろいろ考えると楽しいと想像するのが、真理を追究する人間の姿勢に合っているのではないだろうか。ユニバースには 何でもありで、いろいろ裏があると考える方が、人生や研究を豊かにするのではないだろうか。 ユニバースと数学は どのように成っているのか、知りたいと考える。
新しい割り算の意味の位置づけ、評価は 世界史が明らかにするわけであるから、どのような影響を 世界史に与えるかは、もちろん、直ぐには分らない(再生核研究所声明 41: 世界史、大義、評価、神、最後の審判)。
以 上
文献:
M. Kuroda, H. Michiwaki, S. Saitoh, and M. Yamane,
New meanings of the division by zero and interpretations on 100/0=0 and on 0/0=0, Int. J. Appl. Math. Vol. 27, No 2 (2014), pp. 191-198, DOI: 10.12732/ijam.v27i2.9.
S. Saitoh, Generalized inversions of Hadamard and tensor products for matrices, Advances in Linear Algebra & Matrix Theory. Vol.4 No.2 2014 (2014), 87-95. http://www.scirp.org/journal/ALAMT/
以 上
2014.5.28.16:35 空いた時間を利用して、一気に成文化する。
2014.5.28.17:00 きちんとした発想に基づいているので 纏めは簡単であった。既に相当良い。
2014.5.28.17:50 何時完成できるか。
2014.5.29.09:00 完成できる。 良い。
2014.5.29.10:35 追加税金、1600EU 郵便局から振り込む。
2014.5.29.14:10
2014.5.29.17:30 良い、明日完成できる。
そもそも0は何もないということではなく、例えば
返信削除箱はあるけど、箱の中が空っぽということではないで
しょうか?
箱も何もなければ、10といった表現はできないと
思います。
箱があるのだからプラスの箱とマイナスの箱があっ
てもおかしくなく、以下の表現ができるのではないで
しょうか?
・・・-5 -4 -3 -2 -1 -0
0 1 2 3 4 5 ・・・・
「1÷0が割れない」ということも、例えば、ケー
キを1つ持ってきた場所に誰もいなかったら、そのケー
キは普通、別の部屋にいる人と分けるとかするのでは
ないでしょうか?
日常生活では、割れないから腐らせるとか廃棄する
ということはありません。
そう考えると、今の部屋からケーキが一つなくなる
のですから、1÷0=-1でもいいと思います。
この1÷0=-1は、1=-1×0で、1=0とな
るので0で割ってはいけないとなるのは分かります。
しかし、1=0の0は-0とすれば、1=-0で、
-0はブラックホールのようにすべての数を吸い込ん
でしまう存在といえるのではないでしょうか?
くろべえ様
返信削除0除算不可能説の誤りをを短文で解説しましたので,参考にしていただけましたら幸いです。
https://hoinori.hatenablog.com/entry/2021/04/06/132047
https://hoinori.hatenablog.com/entry/2021/04/06/134807
https://hoinori.hatenablog.com/entry/2021/04/06/205258
https://hoinori.hatenablog.com/entry/2021/04/06/221656
https://hoinori.hatenablog.com/entry/2021/04/07/124945